Spectral residual method for nonlinear equations on Riemannian manifolds
نویسندگان
چکیده
In this paper, the spectral algorithm for nonlinear equations (SANE) is adapted to problem of finding a zero given tangent vector field on Riemannian manifold. The generalized version SANE uses, in systematic way, as search direction and continuous real-valued function that adapts ensures it verifies descent condition an associated merit function. To speed up convergence proposed method, we incorporate adaptive parameter combination with non-monotone globalization technique. global procedure established under some standard assumptions. Numerical results indicate our very effective efficient solving different manifolds competes favorably Polak–Ribiére–Polyak method recently published other methods existing literature.
منابع مشابه
On Estimates for Fully Nonlinear Parabolic Equations on Riemannian Manifolds
In this paper we present some new ideas to derive a priori second order estiamtes for a wide class of fully nonlinear parabolic equations. Our methods, which produce new existence results for the initial-boundary value problems in R n , are powerful enough to work in general Riemannian manifolds. Mathematical Subject Classification (2010): 35K10, 35K55, 58J35, 35B45.
متن کاملMultiple Solutions for Nonlinear Elliptic Equations on Compact Riemannian Manifolds
Let (M, g) be a smooth, compact Riemannian n-manifold, and h be a Hölder continuous function on M . We prove the existence of multiple changing sign solutions for equations like ∆gu + hu = |u| ∗−2 u, where ∆g is the Laplace–Beltrami operator and the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Monge-Ampère Equations on Riemannian Manifolds
where gij denotes the metric of M , g = det(gij) > 0 and φ ∈ C∞(∂Ω), ψ > 0 is C∞ with respect to (x, z, p) ∈ Ω̄× R× TxM , TxM denotes the tangent space at x ∈M . Monge-Ampère equations arise naturally from some problems in differential geometry. The Dirichlet problem in Euclidean space R has been widely investigated. In this case the solvability has been reduced to the existence of strictly conv...
متن کاملSecond Order Estimates and Regularity for Fully Nonlinear Elliptic Equations on Riemannian Manifolds
We derive a priori second order estimates for solutions of a class of fully nonlinear elliptic equations on Riemannian manifolds under structure conditions which are close to optimal. We treat both equations on closed manifolds, and the Dirichlet problem on manifolds with boundary without any geometric restrictions to the boundary. These estimates yield regularity and existence results some of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2021
ISSN: ['1807-0302', '2238-3603']
DOI: https://doi.org/10.1007/s40314-021-01630-3